Determination of Hydroacoustic Draft Tube Parameters by High Speed Visualization during Model Testing of a Francis Turbine
نویسندگان
چکیده
Francis turbines can experience critical instabilities at high load operating points, limiting their maximum power output. The swirling flow developed in the draft tube produces a cavitating axisymmetric volume, acting as an internal energy source leading to a self-excited surge phenomenon. The pulsation of the vortex rope corresponds to one of the eigenfrequencies of the hydraulic system. Efforts to accurately characterize, simulate and predict this phenomenon have been undertaken by several researchers, using a 1-D hydroacoustic model of the full load vortex rope. The key physical parameters are the mass flow gain factor, standing for the excitation mass source of the hydraulic system, the cavitation compliance factor, representing the wave speed and the thermodynamic damping, modeling the energy dissipation between the liquid and the gas. These parameters need to be determined either numerically or experimentally. The aim of the present investigation is to determine the mass flow gain factor and the cavitation compliance using experimental data obtained during a measurement campaign on a reduced scale Francis turbine model and to compare the results to existing CFD data.
منابع مشابه
Interaction of a pulsating vortex rope with the local velocity field in a Francis turbine draft tube
Acoustic resonances in Francis turbines often define undesirable limitations to their operating ranges at high load. The knowledge of the mechanisms governing the onset and the sustenance of these instabilities in the swirling flow leaving the runner is essential for the development of a reliable hydroacoustic model for the prediction of system stability. The present work seeks to study experim...
متن کاملNumerical Study of a Pipe Extension Effect in Draft Tube on Hydraulic Turbine Performance
Draft tube of Francis type hydraulic turbine usually consists of: cone, elbow and diffuser. On the contrary, in some power stations an extra pipe should be added to the draft tube at the bottom of cone because of installation limitation. In this paper, this special case has been numerically studied. To this end CFD analysis was applied to simulate all parts of hydraulic turbine. A homogeneous m...
متن کاملMethodology for Risk Assessment of Part Load Resonance in Francis Turbine Power Plant
At low flow rate operation, Francis turbines feature a cavitating vortex rope in the draft tube resulting from the swirling flow of the runner outlet. The unsteady pressure field related to the precession of the vortex rope induces plane wave propagating in the entire hydraulic system. The frequency of the vortex rope precession being comprised between 0.2 and 0.4 times the turbine rotational s...
متن کاملPhysical Mechanisms governing Self-Excited Pressure Oscillations in Francis Turbines
The importance of renewable energy sources for the electrical power supply has grown rapidly in the past decades. Their often unpredictable nature however poses a threat to the stability of the existing electric grid. Hydroelectric powerplants play an important role in regulating the integration of renewable energy sources into the network by supplying on-demand load balancing as well as primar...
متن کاملInvestigation of a High Head Francis Turbine at Runaway Operating Conditions
Hydraulic turbines exhibit total load rejection during operation because of high fluctuations in the grid parameters. The generator reaches no-load instantly. Consequently, the turbine runner accelerates to high speed, runaway speed, in seconds. Under common conditions, stable runaway is only reached if after a load rejection, the control and protection mechanisms both fail and the guide vanes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011